
Alternative Technologies 

Enterprise Database System Requirements 

I. Introduction 

David McGoveran 
Alternative Technologies 

13130 Highway 9, Suite 123 
Boulder Creek, CA 95006 
Telephone: 408/425-1859 

FAX: 408/338-3113 

Enterprise-wide information systems (IS) planning is increasing 
in importance with the development of a world market. Even small 
companies must compete in the world market for resources and 
market share. This rapidly developing situation has placed new 
and potentially costly business requirements on IS. At the same 
time, information technology is developing at an unprecedented 
rate. RDBMS requirements of today's enterprise information 
systems are discussed in the broader context of enterprise IS 
goals. The key issues being addressed by RDBMS vendors are 
examined, including reliability, scalability, cost effectiveness, 
and openness. 

II. RDBMS Reliability 

~ Understanding reliability 

What is reliability in a RDBMS? First, it is closely related to 
availability. A RDBMS which has only continuously available 
features is certainly reliable. However, it is also possible for 
a RDBMS to be reliable if loss of availability can be planned and 
managed. Second, RDBMS reliability is related to quality. For an 
application to be reliable, the quality of data on which it 
relies must be controlled and guaranteed. 

A reliable RDBMS is, first and foremost, predictable. It is not 
necessarily one that is fault tolerant, although high 
availability is certainly one aspect of reliability. End-users 
must be able to rely on the RDBMS to deliver timely data, without 
corruption. Administrators must be able to rely on the RDBMS 
with respect to capacity planning and other database 
administration tasks. Data integrity features, non-conflicting 
data definition, data manipulation, security and maintenance 
operations, transaction isolation, and high concurrency are key 
aspects of reliability. 

c.1992, Alternative Technologies, All Rights Reserved Page 1 



Enterprise Database System Requirements July 21, 1992 

!L._ Evaluating reliability 

When evaluating a RDBMS for reliability, a number of issues must 
be addressed including continuous operation, robustness, 
integrity, and non-interference between operations. Each of 
these is examined in turn below. 

By continuous operation, we mean that the system should reduce or 
even eliminate both planned and unplanned outages. Often, a RDBMS 
must be taken off-line in order to run some utility. Utilities 
for database loading, backup, recovery, integrity validation, 
index reorganization, etc., should all be executable on-line. If 
a failure occurs during such maintenance operations, the utility 
should not have to be restarted from the beginning of the 
operation. For example, it might perform periodic checkpoints or 
even full journaling so that utilities could continue processing 
from the point of failure. Other capabilities such as on-line 
and automatic archival of full log files, automatic restart 
(i.e., no operator intervention), and controllable system restart 
times are also important; these minimize operations which can 
require that the RDBMS be taken off-line. 

By robustness, we mean that the RDBMS reduces the importance of 
any particular failure and recovers from it transparently. The 
RDBMS should provide both read and write access to data 
regardless of the circumstances, including hardware system or 
component failure. Systems which provide such high availability 
are said to be fault tolerant. Fault tolerant systems often rely 
on some various forms of redundancy, including redundant 
hardware, data, and processes to eliminate any single point-of­
failure. 

Hardware redundancy takes many forms, including completely 
redundant systems, redundant processors (either loosely coupled 
or tightly coupled), and redundant storage media (e.g., disk 
mirroring). When data is made redundant in a relational RDBMS it 
is said to be replicated. Hardware redundancy can minimize the 
time it takes to restart application software in the event of 
hardware failure. It is also possible for the software to make 
use of hardware redundancy, detect failures, and restart 
automatically. The user would not be able to detect that a 
failure had occurred if the ability to switch to back-up hardware 
were sufficiently sophisticated. 

Another important aspect of providing high availability is 
distribution. By spreading out the location of software 
processing and data, the impact of any particular site or 
hardware failure can be reduced. Thus the amount of (hopefully 
transparent) software recovery which must take place following a 
failure can be reduced. Client/server architectures are a form 
of this kind of software distribution. They separate 
application-specific portions of an application from those 
portions that can be handled by sharable services and resources. 
Both the clients and the sharable services can be further 
distributed. In the case of a RDBMS, the distribution can entail 

c.1992, Alternative Technologies, All Rights Reserved Page 2 



Enterprise Database System Requirements July 21, 1992 

distribution of both RDBMS processes and data. When a RDBMS allows 
data to be distributed while providing the user with a stable 
view of the data, we say that the RDBMS supports location 
transparency (also known as location independence). 

Regardless of where the data is located or how it is redundantly 
stored, the RDBMS provides a single logical location to the user, 
even when the physical location or the manner of redundancy is 
altered. For example, in addition to being replicated, a 
relational table might be split into multiple parts called 
fragments. The RDBMS might support either horizontal 
fragmentation meaning that row subsets of the table are 
physically distributed or vertical fragmentation meaning that 
column subsets of the table are physically distributed. It is 
also possible for multiple processors (perhaps widely separated 
in a physical sense) to share in query processing. This 
distribution of resources not only increases system availability, 
but may be intended to improve performance in certain circumstances. 

Distribution of data introduces major technical problems for a 
RDBMS. For example, distributed transaction management in a system 
with multiple processors requires coordination among them for 
transaction commit, transaction rollback, and recovery. 
Replication requires an ability to synchronize redundant copies 
so that data integrity is maintained -- each user should perceive 
a single logical database rather than multiple, independent 
copies which contain different data. 

Of course, it is sometimes possible to divide data among 
applications, users, or transactions so that independent 
databases can be maintained. A database with this property is 
said to be segmentable. It might still be desirable to 
administer a single logical database, however. 

Even if a system supports continuous operation and overall high 
availability, throughput can suffer from interference between 
various logical operations. For example, data and security 
definitions are often incompatible with the ability to write to 
affected database objects and sometimes with the ability to read 
those objects as well. It is particularly important that an 
enterprise database system support mission critical applications 
by eliminating operation interface. In particular, the database 
should permit updates which do not interfere with reads and vice­
versa. Utility operations on large tables such as backup, load, 
index creation, and index reorganization may require that the 
table be taken off-line. Similarly, physical database allocation 
and reorganization, space management, log archiving, and system 
restart should have a minimal impact on applications. 

A major factor in controlling operation interference is a good 
concurrency control system, which is intended to manage 
concurrent transactions while insuring isolation between them. 
Typical concurrency control systems are pessimistic, which means 
that they use locks to provide isolation. Duration of lock 
waits, the number of locks acquired, lock granularity (row, page, 

c.1992, Alternative Technologies, All Rights Reserved Page 3 



Enterprise Database System Requirements July 21, 1992 

or table), and when locks are released all affect the degree to 
which concurrent transactions interfere. Optimistic concurrency 
control systems assume that interference will be exceptional and 
so do not hold locks. Typically, optimistic schemes maintain 
multiple copies of the data (multi-versioning or multi­
generations) and then resolve conflicts at commit time by 
rejecting one or more of the conflicting transactions. 

Regardless of the concurrency control mechanism used, it is 
important that the database system provide a clear definition of, 
and some control over, the degree of isolation available. 
Traditionally, five levels of isolation (such as dirty read, 
cursor stability, and repeatable read) were defined based on a 
pessimistic concurrency control scheme. However, when a database 
system uses a different scheme or permits schemes to be 
intermixed, the definition of these levels of isolation and the 
corresponding ways in which integrity can be lost may differ from 
the traditional one. It is important that users understand these 
differences when selecting a database system for enterprise use, 
since a loss of integrity can affect an entire organization. 

An RDBMS always needs to support integrity, but for enterprise 
RDBMS automatic integrity enforcement takes on a renewed 
importance. It may not be unusual for a personal or departmental 
RDBMS to support only a few applications and a smaller database. 
With a relatively small database, relationships between tables 
are easy to identify. If the applications which use the database 
are fixed in number and function and if ad-hoc update is not 
needed, integrity can be managed to some extent in the 
application. Of course, this practice is deprecated, but it is 
all too common. With automatic integrity enforcement, all 
integrity rules are defined in and enforced by the RDBMS so that 
neither the mistakes of ad-hoc users nor bugs in application 
programs can corrupt the database. 

Integrity issues have traditionally been classified as belonging 
to one of five types: entity, referential, domain, column, or 
user-defined. Entity integrity demands enforcement of primary 
key discipline and is usually accomplished by declaring a column 
or set of columns in a table to be the primary key. Referential 
integrity enforces certain relationships between tables in which 
one table must reference another. A standard set of actions has 
been defined (these are not exhaustive) which permit the user to 
declare both the relationship and how update, insert, and delete 
operations are to be handled. Domain integrity enforces rules 
regarding the values that are permitted in a domain and what 
operations are permitted on those values. Column integrity does 
the same thing for individual column, which are themselves drawn 
from some domain of permissible values. Column integrity is 
usually enforced by specifying declarative constraints 
(uniqueness, non-null, values ranges, etc.) when the table is 
created. Since domains are usually not supported by RDBMSs, 
there is no standard way in which domain integrity is handled. 
User-defined integrity relates to business rules. Most RDBMSs 
enforce user-defined integrity through a database trigger 

c.1992, Alternative Technologies, All Rights Reserved Page 4 



Enterprise Database System Requirements July 21 I 1992 

mechanism. 

v. RDBMS Scalability 

h Server "Size" 

A scalable RDBMS is essential in any business with changing needs 
and workloads. It permits planning for growth and technology 
change. Scalability is often understood in terms of linearity. 
For example, if the workload doubles, performance should be 
reduced to no less than about fifty percent. Similarly, adding 
twice as much computing power (memory and CPU) should roughly 
double performance or perhaps the number of concurrent users. 

An RDBMS can be scalable either horizontally or vertically. 
Horizontal scaling refers to the ability to add (or remove!) 
database servers. It requires support for distribution, 
portability, and cross-platform interoperation. Vertical scaling 
refers to the ability to increase (or decrease!) database server 
computing power, either within a given family of computer 
hardware and operating systems or, if necessary, using a 
completely different platform. RDBMS vendors have usually 
focused on upward scalability. Downward scalability is just as 
important, since it permits the company to downsize more easily 
and to eliminate unnecessary computing resources. 

!L._ Server Interoperation 

Support for horizontal scaling requires that servers interoperate 
transparently. As the workload needs of the enterprise increase, 
additional servers can then be added without disrupting 
applications. The distribution of requests to servers can be 
managed by either the application, a gateway or name service, or 
by servers. Request distribution by the application places a 
burden on developers and system managers. Request distribution 
by a gateway usually requires additional hardware which can 
become a bottleneck as well as a single point of failure. Both 
of these forms of distribution requires RDBMS support for remote 
server access. 

In server-to-server request distribution, each server in a group 
is known to all the others and can forward requests as necessary. 
If a database server supports distributed query processing and 
shared access to data, automatic workload distribution becomes 
possible. Such interoperating servers are said to be cooperative 
servers. 

In an enterprise-wide distributed computing environment, it is 
likely that cooperative servers will be arranged in groups. 
These groups of servers can then behave as though they were a 
single server, providing the benefits of horizontal scaling. In 
addition, groups of servers may be interconnected and form 
distributed server groups. 

c.1992, Alternative Technologies, All Rights Reserved Page 5 



Enterprise Database System Requirements July 21, 1992 

~ Transparent Distribution 

In principle, distributed server groups and cooperative servers 
can lead to enterprise wide data sharing. At the same time, 
fault tolerance, availability, and reliability can be improved. 
Users can distribute or consolidate data as needed. 

For distributed server groups to interoperate transparently, the 
database must be fully distributed. This means that distributed 
transactions, a distributed data dictionary and global naming 
scheme, and platform (network, hardware, and operating system) 
transparency must be supported by the RDBMS, in addition to 
distributed query processing (distributed join optimization), 
site autonomy, no single point of failure, and fragmentation and 
replication independence. 

In order for this to work well, the RDBMS must be able to take 
advantage of both loosely coupled and tightly coupled multi­
processor systems. A key issue is cache coherence or 
consistency. The method by which cache coherence is maintained 
has an affect on which levels of transaction isolation can be 
supported, on the efficiency of scaling, on the robustness of the 
system (a single point of failure can be introduced 
inadvertently), and on recovery mechanisms. 

When symmetric multiprocessing (SMP) is used, processors can 
share access to a common cache. This means that cache coherence 
can be maintained by some mechanism of mutual exclusion, 
preventing more than one processor to have access to the same 
portion of cache at any given time. A good cache management 
scheme must provide mutual exclusion without the mechanism 
becoming a bottleneck. 

In a loosely coupled processor scheme, cache coherency is more 
difficult to maintain efficiently because memory is not shared. 
For this reason, mutual exclusion must be made known to all 
participants. If multiple copies of cache are used, there can be 
only one valid copy of any portion of cache at any time. The 
acceptable methods of maintaining cache coherence depend on how 
loosely coupled processors are interconnected and on what 
mechanisms exist for communicating global information. 
Typically, loosely coupled processor systems provide some form of 
distributed lock management. If a network is involved, locking 
overhead can be extremely high. 

A number of other facilities can provide significant benefit in a 
cooperative serve r environment. Support for triggers and 
alerters can provide a me ans for user-defined server-to-server 
communications. Transparent two-phase commit and declarative 
integrity reduce the amount of effort involved in re-distributing 
data among servers. Without these, application code must be 
modified to take into account changes in which servers are 
accessed and for what data. With declarative integrity, the 
distributed RDBMS system catalog can be accessed to determine how 
integrity is to be enforced since this information need not be 

c.1992, Alternative Technologies, All Rights Reserved Page 6 



Enterprise Database System Requirements July 21, 1992 

dependent on data or table location. Similarly, TP monitor 
support can provide integration of cooperative servers with 
foreign data sources and existing applications. 

VI. RDBMS Cost Effectiveness 

Within the RDBMS industry, RDBMS cost of ownership is often 
obtainable from TPC benchmarks. These benchmarks report $/TPS, 
which include hardware and software ownership and support costs 
over a five year period. A lower cost RDBMS enables IS managers 
to be less concerned about performing a "cost/benefit" or "break 
even" (i.e., determining the point at which costs outweigh 
benefits) analysis. 

A cost effective RDBMS can have an important beneficial impact on 
all the costs of data processing. The many benefits of 
relational systems are often lost because the overall cost of 
ownership of the RDBMS is too high. Ease of use, ease of 
maintenance, and ease of application development are all 
important in this regard since they reduce costs due to training, 
day-to-day operation, and maintenance. In addition, both 
improved performance and the elimination of data corruption 
errors should be goals in moving to relational applications. All 
too often, mis-design of relational applications leads to poorer 
performance than was found in non-relational applications. The 
RDBMS should encourage proper design of relational and 
distributed (e.g. client/server) applications by providing the 
appropriate facilities. 

~ Application Design, Development, and Maintenance Costs 

Application design, development, and maintenance costs have a 
strong impact on RDBMS cost effectiveness. The relational model 
was designed to reduce these costs: as a result, it is important 
that the RDBMS adhere closely to the relational model. Support 
for logical data independence means that applications need not be 
designed for particular database designs. Thus, as the logical 
database design changes, applications remain viable. At best, 
some tuning may have to be done, but not if the RDBMS supports a 
good statistical optimizer. Support for schema independence 
has a strong impact on maintenance costs. This means that 
applications do not need to know about database design 
particulars such as table and column names. Schema independence 
is usually achieved by using ~stored procedures, rather than 
through embedded SQL. Care must be taken when evaluating stored 
procedure support, since not all stored procedures are created 
equal, nor are the languages in which they are written. 

A great deal of application code can be eliminated if the RDBMS 
is capable of enforcing integrity rules, including entity, 
referential, domain, column, and user-defined integrity. 
Declarative primary key, column constraints, and referential 
integrity support, along with database triggers, provide much of 
this capability. Unfortunately, most RDBMS product do not 

c.1992, Alternative Technologies, All Rights Reserved Page 7 



Enterprise Database System Requirements July 21, 1992 

supports relational domains. Further application coding can be 
reduced is non-procedural access is well supported. The RDBMS 
must have a good optimizer and a good concurrency control scheme 
or else developers will

1
write procedural code to circumvent RDBMS 

inefficiencies. ~~ ~ 

!L_ Operational and Maintenance Costs 

Operational costs and resource utilization are important from the 
point-of-view of costs of ownership. Backup, restore, physical 
organization, reorganization, and restart procedures should be 
easy to manage. Tuning should be repeatable, the impact of 
changes easy to understand, and the process of tuning easy to and 
perform. The RDBMS should provide utilities for monitoring and 
governing resources usage, since this has an impact on 
costs associated with availability, maintenance, performance, and 
capacity planning. In addition, the RDBMS should be frugal with 
respect to physical resource utilization. Obviously, this will 
reduce costs associated with hardware support of the RDBMS such 
as CPU, disk, and memory requirements. 

~ Direct Costs 

Direct costs associated with licenses and software support 
agreements are also important. Typically, these are related to 
the number of users which must be supported and should be 
competitive in the industry. It is important to take a long term 
and broad view of these costs; it the features and functionality 
are not competitive, additional development and operational costs 
will be incurred and it is more likely that license upgrades will 
be required. 

VII. DBMSs and Open systems 

An extensible RDBMS is achieved in a variety of ways. With the 
appropriate facilities, this leads to support for open systems. 
Open systems support has different meanings for different 
companies. For some, it means that integration and 
interoperation with their products is possible. For others, it 
means that public standards are supported. For still others, it 
means that proprietary standards are followed and made available 
to customers. 

~ Interoperating with External Systems 

There are several types of database gateways offered by RDBMS 
vendors and may be either software only or require a separate 
hardware platform. Gateways may support either uni-directional 
or bi-directional data access between two types of systems. 
Perhaps the two most common types of gateway are the standard 
RDBMS gateway and the custom gateway. 

Standard gateways are provided by the vendor and provide access 

c.1992, Alternative Technologies, All Rights Reserved Page 8 



Enterprise Database System Requirements July 21, 1992 

to foreign data. Typically, the data is managed by another 
vendor's RDBMS products. There is tremendous variability in the 
degree of transparency and compatibility which such gateways 
provide. Gateways may provide either direct connection from an 
application or access via the native RDBMS. 

Custom gateways are generally supported through vendor-supplied 
gateway development kits. This requires that the RDBMS support 
server-to-server interoperation and that the interface mechanism 
be fully documented and supported. Custom gateways permit the 
end-user to obtain access to proprietary and non-database data 
sources. This capability is extremely important for enterprise 
RDBMS environments, since it enables integration of RDBMS-based 
applications with legacy applications at the data level. 

In addition to providing access to data, custom gateways are 
sometimes used to write user-defined extensions to the RDBMS. 
For example, if the user needs to implement data encryption 
services, a custom gateway can be written which performs this 
service. Without this capability, users must write such services 
into application code, are dependent on the RDBMS vendor to 
provide such services, or else must have the ability to modify 
the RDBMS code. Each of these options makes enterprise IS 
susceptible to additional and less controllable points of 
failure. 

!L_ Standards 

Ideally, the goal is low-cost extensibility leading to systems 
with a longer life expectancy. As long as limited functionality 
and slower innovation can be tolerated, low-cost extensibility 
can be achieved best by support for public or de jure standards. 
In principal, competition between vendors can lead to lower cost 
and easily interconnected applications. When higher levels of 
functionality are required, users must look to proprietary 
standards and the innovations of a particular vendor. If the 
vendor is large enough, such proprietary standards may become 
public by default (de facto standards). Of course, either de 
jure or de facto standards may restrain the industry from 
creating truly innovative, more efficient, and more cost­
effective solutions. 

Perhaps the most important RDBMS de jure standard is the ANSI SQL 
standard. This standard provides a definition of the syntax of 
SQL and was first approved in 1986. It was extended in 1989 with 
the Integrity Enhancement Features. Many vendors support some 
degree of compliance with the 1989 standard. Although ANSI does 
not validate compliance with the standard, the National Institute 
of Standards and Technology (NIST) does perform compliance 
testing for a superset of the standard, the Federal Information 
Processing Standard 127. 

A new version of the standard, SQL2, is expected to be approved 
in late 1992. This version provides significant extensions to 

c.1992, Alternative Technologies, All Rights Reserved Page 9 



Enterprise Database System Requirements July 21, 1992 

the standard SQL syntax and functionality. Although RDBMS 
vendors are rushing to support some level of compliance with 
SQL2, it is extremely complicated, and considerable effort will be 
required. Yet another version, SQL3, is already in preparation 
and threatens to be even more complex. 

Among the most confusing of enabling database technologies is 
that for distribution. Part of confusion stems from the 
difference between process distribution (distributed computing) 
and data distribution (distributed database). It is important 
that an RDBMS product support both. An RDBMS can support 
distributing computing through its architecture and through 
certain features such as database stored procedures (either local 
or remote). The most common distributed computing architecture 
supported by RDBMS products is client/server. A client/server 
architecture permits application-specific code to be separated 
from the RDBMS code and data, possible across multiple client 
platforms. Support for remote stored procedures permits database 
processing to be shared across multiple server platforms, but not 
necessarily within the context of a single transaction nor with 
each server having access to the same data. 

RDBMS distributed database support requires that each user or 
application perceive multiple databases as a single logical 
database, regardless of physical location. Database authorities 
have proposed different ways of defining distributed database 
support. Chris Date has identified twelve objectives for 
distributed database support. These include local autonomy, no 
reliance on a central site, continuous operation, location 
independence, fragmentation and replication independence, 
distributed query processing, distributed transaction management, 
hardware independence, operating system independence, network 
independence, and RDBMS independence. Similarly, Mike 
Stonebraker has identified seven rules based on transparency. 
These are update, retrieval, scheme, performance, transaction, 
copy, and tool transparency. 

While there are no distributed RDBMS standards per se, 
distribution of SQL requests requires interconnection. This area 
is the topic of a number of standards efforts. Among them are 
ISO's RDA (International Standard Organization's Remote Data 
Access), SAG's (SQL Access Group's) SQLCLI, IBM's DRDA 
(Distributed Relational Database Architecture), and Microsoft's 
ODBC (Open Database Connectivity). RDA provides a set of ·data 
formats and protocols without specifying either SQL syntax or an 
API. These issues are addressed by SAG's SQLCLI, which is a 
subset of Microsoft's ODBC. For a variety of reasons, IBM has 
chosen not to support SQLCLI and have defined a proprietary 
standard which they hope will become a de facto standard in IBM 
environments. 

When existing environments are transaction-based, new technology 
cannot be integrated without some means of coordinated 
transactions between applications. Because traditional RDBMS 
products manage transactions through internal services, it is 

c.1992, Alternative Technologies, All Rights Reserved Page 10 



Enterprise Database System Requirements July 21, 1992 

important to support external transaction services, known as TP 
monitors. Both UNIX-based and proprietary TP monitors are 
available. Most UNIX-based TP monitors support a call-level 
interface standard known as XOPEN/XA. If the RDBMS supports TP 
monitors, newer applications can be integrated with older 
applications via the TP monitor at the transaction level. This 
means that older application modules can be selectively and more 
readily replaced by newer software without disruption of the 
existing transaction profiles. 

In addition to standards for SQL, interconnection, and 
transaction processing, operating systems standards have also 
been developed. Compliance with operating system standards are 
intended to increase the portability and scalability of 
applications, as well as providing interoperation among systems. 
Most dominant in this area are standards for some form of the 
UNIX operating system. These efforts are usually known as open 
systems standards, although this is probably a misnomer since it 
restricts the idea of open systems to UNIX. Among the standards 
are OSF/1 and POSIX. Even proprietary operating systems such as 
Digital Equipment Corporation's VMS are moving toward de facto 
standards compliance by introducing an OSF/1 and POSIX compliant 
layer. 

VIII. conclusions 

Great care must be taken in evaluating RDBMS products. Contrary 
to the predictions of non-technical industry analysts, extensive 
experience in evaluating RDBMS products shows they are not 
becoming commodity items. On the one hand, the differences 
between these products is becoming more subtle and difficult to 
understand. On the other, these subtleties make the difference 
between success and failure. If all RDBMS products were 
identical, the cost of replacing one with the other would be 
limited to the license fees and DBA training costs. 

In this paper I have examined the key concerns of enterprise IS 
and the requirements these concerns place on RDBMSs. Given the 
costs, enterprise IS cannot afford to select the wrong RDBMS. 

References: 

D. McGoverna, "ORACLE?", Database Product Evaluation Report 
Series, c . 1992, Alternative Technologies. 

c.1992, Alternative Technologies, All Rights Reserved Page 11 




